metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22.F5, C5⋊2M4(2), Dic5.3C4, Dic5.7C22, C5⋊C8⋊2C2, C2.6(C2×F5), C10.6(C2×C4), (C2×C10).2C4, (C2×Dic5).5C2, SmallGroup(80,33)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C22.F5 |
Generators and relations for C22.F5
G = < a,b,c,d | a2=b2=c5=1, d4=b, dad-1=ab=ba, ac=ca, bc=cb, bd=db, dcd-1=c3 >
Character table of C22.F5
class | 1 | 2A | 2B | 4A | 4B | 4C | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | |
size | 1 | 1 | 2 | 5 | 5 | 10 | 4 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | -i | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | i | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | -2 | 0 | -2i | 2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | complex lifted from M4(2) |
ρ10 | 2 | -2 | 0 | 2i | -2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | complex lifted from M4(2) |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ12 | 4 | 4 | 4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√5 | 1 | √5 | symplectic faithful, Schur index 2 |
ρ14 | 4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √5 | 1 | -√5 | symplectic faithful, Schur index 2 |
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)
(1 24 32 9 35)(2 10 17 36 25)(3 37 11 26 18)(4 27 38 19 12)(5 20 28 13 39)(6 14 21 40 29)(7 33 15 30 22)(8 31 34 23 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
G:=sub<Sym(40)| (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40), (1,24,32,9,35)(2,10,17,36,25)(3,37,11,26,18)(4,27,38,19,12)(5,20,28,13,39)(6,14,21,40,29)(7,33,15,30,22)(8,31,34,23,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;
G:=Group( (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40), (1,24,32,9,35)(2,10,17,36,25)(3,37,11,26,18)(4,27,38,19,12)(5,20,28,13,39)(6,14,21,40,29)(7,33,15,30,22)(8,31,34,23,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40)], [(1,24,32,9,35),(2,10,17,36,25),(3,37,11,26,18),(4,27,38,19,12),(5,20,28,13,39),(6,14,21,40,29),(7,33,15,30,22),(8,31,34,23,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])
C22.F5 is a maximal subgroup of
Dic5.D4 C23.F5 D5⋊M4(2) D4.F5 D6.F5 C15⋊8M4(2) C25⋊M4(2) D10.F5 C52⋊4M4(2) C102.C4 C52⋊13M4(2) C52⋊14M4(2) C22.S5
C22.F5 is a maximal quotient of
C10.C42 Dic5⋊C8 C23.2F5 D6.F5 C15⋊8M4(2) C25⋊M4(2) D10.F5 C52⋊4M4(2) C102.C4 C52⋊13M4(2) C52⋊14M4(2)
Matrix representation of C22.F5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
6 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 35 | 35 |
0 | 0 | 6 | 40 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
23 | 6 | 0 | 0 |
21 | 18 | 0 | 0 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[6,1,0,0,40,0,0,0,0,0,35,6,0,0,35,40],[0,0,23,21,0,0,6,18,1,0,0,0,0,1,0,0] >;
C22.F5 in GAP, Magma, Sage, TeX
C_2^2.F_5
% in TeX
G:=Group("C2^2.F5");
// GroupNames label
G:=SmallGroup(80,33);
// by ID
G=gap.SmallGroup(80,33);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,101,42,804,414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^5=1,d^4=b,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C22.F5 in TeX
Character table of C22.F5 in TeX